EFBW Water & Hydration Lessons

The Scientific Basics of

Water & Hydration

This presentation is produced by the EFBW Health Working Group. Its content is based public scientific information about water and related health benefits.

The information here mentioned should be used to explain the basics of water and hydration to the members of EFBW exclusively. The information should not be used to make claims on commercial products.

EFBW Health working group: Chair : Dr L. Le Bellego Members:

Dr F. Constant, Dr J. Bontemps, Dr. Jésus Roman, Y. Kaderbhoy

Table of Contents

- 1. Water: Facts & figures
- 2. The various roles of water in our body
- 3. Distribution of body water
- 4. Water Balance
- 5. Total water intake
- 6. Benefits of water
- 7. Water is the healthy hydration choice
- 8. General Conclusion

1. Water: Facts & Figures Importance for life

Water, after oxygen is the most critical element for life on earth

- We cannot live more than...
- 9-10 days without water
- 45-65 days without food

Water is the main constituent of our body

- On average 60% of an adult's body is composed of water

Water is the most important nutrient for our body

- Water represents the largest part of our food content and therefore occupies the largest segment (i.e.: the base) of the food pyramid

- We will consume almost 1 tonne (1000 litres) of water every year

1. Water: Facts & Figures Main constituent of an adult's body

On average 60% of an adult's body weight is composed of water

Our body parts contains various amounts of water from: 31% in bones to 83% in lungs

60%

1. Water: Facts & Figures Main constituent of our body but decreases with age

Body water content decreases with age

More than 75% at birth to less than 50% in old age

6

1.Water: Facts & Figures Water is Life – Man is a Waterman

7

2. The various roles of water in our body Building material: cells and fluids

8

Building material for cells

- Water is present in each cell of our body, in tissues and organs
- Each cell contains on average 60% water
- Water is important during growth and cellular regeneration

Building material for fluids

Water in combination with other elements forms:

- Lubricating fluids for joints
- Saliva, gastric and intestinal mucus secretion in the digestive system
- Mucus in airway secretion in the respiratory system: nose, trachea and lung
- Water also protects key body tissues against shock: ie: brain and fetus

2.The various roles of water in our body Reaction medium and solvent

Reaction medium

- In our body, biochemical reactions occur in and with water

Solvent

9

- Water dissolves minerals, vitamins, amino acids, glucose and many other vital substances

amino acid

Vitamin C

2. The various roles of water in our body Transporter and temperature control

Transporter

- Water in our body carries nutrients throughout the organism down to the cells
- Brings to each cell the ingredients it requires
- On the way back, water carries metabolic waste to the kidney for excretion

Temperature Control

- Sweat is the body's coolant which is mostly made of water
- Water evaporating at the skin's surface decreases body's temperature
- This happens under higher external temperatures and/or during physical exercise

2. The various roles of water in our body Conclusion

Water is essential for practically all functions of the body as it plays multiple roles, among which :

- Building material for cells and fluids -
- Reaction medium and solvent
- Transporter of nutrients and waste material
- Control of body temperature

A+B

11

C+D

3. Distribution of body water

Water flows in our body

3. Distribution of body water Intracellular and Extracellular compartments

13

Water is everywhere in the body!

Illustration of the distribution of water for an adult man (weight 70 kg)

Homeostasis aims at keeping our water balance constant

14

Our body water content is an equilibrium between gain and losses

The principles of total water intakes

Equilibrium is met when water inputs equals water outputs

- At every moment our body loses water throughout the kidney, the gastro-intestinal tract, the lungs and the skin: water outputs.
- Our body doesn't store extra water.
- Therefore we must imperatively replace the losses to equilibrate the water balance.
- Beyond the water contained in food : we need to drink in order to fully compensate for our losses

15

Factors affecting the equilibrium

Diet and Fluids

Clothing

Activity: length & intensity

Weather and climate: temperature & humidity

8GP

EFBW Health Working Group 2011

16

Inputs/outputs for healthy sedentary adult living in temperate climate

17

Ŷ	Ţ	Average water inputs (ml/day)		Average outputs (ml/day)	water	
	Fluids	1575 ml	Urine		1600 ml	12.0
	Foods	675 ml	Skin		450 ml	• 12.0
	Metabolic Water	300 ml	Respiration		300 ml	T
			Feces		200 ml	R
DI	Total	2550 ml	Total		2550 ml	

Total water intake should be at least covered by 1.6 L per day

Active adults need more water!

18

Physical activity is a major factor impacting water losses depending on length and intensity.

Examples of sweat losses of an adult male during one hour of physical activity in summer*

-Cross Country	Running	1.8 L
-Swimming		0.4 L
-Soccer		1.5 L
-BasketBall		1.4 L
-Tennis		1.6 L

American College of Sports Medecin 2007*

Regulation of body water content

19

What happens if we drink more than we need?

- Excess water intake vs. losses are quickly regulated by the kidneys (i.e.: water excretion in urine) in a normal healthy subject

What happens if we don't drink enough?

- Our body will retain water and produce concentrated/ coloured urine:
- When thirst appears, our body is already mildly dehydrated
- Signs of mild dehydration will progressively occur:
 - ✓ Dry mouth
 - ✓ Fatigue
 - ✓ Thirst
 - ✓ Decreased urine volume
 - Reduction of physical and mental performance
 - ✓ Headache
 - ✓ Dizziness

Conclusion

20

A water intake which balances losses and thereby assures adequate hydration of body tissues is essential for health and life.

It is essential to drink water to stay adequately hydrated !

5. Total water intake (EFSA)

Influence of age and gender

21

Populatio	<u>Total</u> water adequate intake			
Infants	0-6 months	680 mL/d (THROUGH MILK)		
	6-12 months		800-1000 mL/d	
	1-2 years	1100-1200 mL/d		
	2-3 years	1100-1200 mL/d		
Childron	4-8 years		1600 mL/d	
Children	0.12.00000	Boys	2100 mL/d	
	9-13 years	Girls	1900 mL/d	
	> 14 years		Idem adults	
Adulta	Men	2500 mL/d		
Aduits	Women	2000 mL/d		
Pregnant	women	+ 300 mL/d vs adults		
Lactating women			+ 600-700 mL/d vs adults	
Elderly			Same as adults	

* SEFBW

5. Total water intake (EFSA) The water we drink + the water we eat

The reference values of total water intake include water from drinking water, beverages of all kind, and from food moisture and only apply to conditions of moderate environmental temperature and moderate physical activity.

Intake of water is predominately through consumption of drinking water and beverages (80%) plus water contained in food (20%) *

Total water intake for an adult: -male = 2500 ml/day ; 80% = 2000 ml /day* -female = 2000ml/day; 80% = 1600 ml /day*

This represents 8-10 glasses of 200 ml a day

* EFSA Journal 2010; 8 (3): 1459

6. Benefits of water

EFSA health claims related to water

EFSA has recognised the importance of water and its relevance for health, with three water generic claims :

Water contributes to the maintenance of normal physical functions

Water contributes to the maintenance of normal cognitive functions

Water contributes to the maintenance of normal thermoregualtion

The EFSA expert panel considers that in order to obtain the claimed effects, at least 2.0 L of water should be consumed per day.

EFSA Journal 2011; 9 (4): 2075

7. Water is the healthy hydration choice

Various beverages contribute to 80% of the total reference value for water.

Among beverages of all kinds, water is the healthy hydration choice:

- ✓ zero calories✓ no sugar
- ✓ without additives

Clearly, water ought to be the preferred drink for our body's daily hydration all life long!

8. General Conclusion

- ✓ Water, our main body constituent is an essential nutrient
- ✓ Water plays a vital role for life and health
- ✓ Consuming water is essential to compensate water losses on a daily basis

8. General Conclusion

- ✓ Water needs are defined according to gender and age
- ✓ Adults should drink at least 1.5 2.0 litres per day
- ✓ Water needs are increased by activity and hot weather
- ✓ Water contributes to the maintainance of normal physical functions cognitive functions and thermoregulation

Thank You

Contact us for further information:

EFBW 32 Rue de l'Association 1000 Brussels +32 2 210 20 32 info@efbw.org www.efbw.org

